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Abstract  —  Zolotarev rational functions may be used in 

certain bandpass filter applications for which two narrower 
passbands are required.  Coupled-resonator lowpass proto-
types for narrow bandpass filters based on even- and odd-
degree Zolotarev functions are synthesized using transformed 
variables. 

I. INTRODUCTION 

A double-passband rf or microwave filter requirement is 
usually satisfied with two bandpass filters, diplexed at both 
ends.  In instances where rejection between the passbands 
is not required, a more efficient use of resonators and a 
simpler structure may be obtained with a single coupled-
resonator filter based on a Zolotarev lowpass prototype of 
either even or odd degree. 

The conventional Chebyshev LC lowpass filter has an 
equiripple passband in the normalized lowpass frequency 
domain defined by 0 ≤ ω ≤ 1.  The Zolotarev lowpass filter 
is similar, except that the equiripple passband is defined by 
0 < a ≤ ω ≤ 1, as for a conventional LC bandpass filter.  
The even-degree Zolotarev lowpass filter has a mismatch 
at zero frequency, and is realizable as an impedance-
transforming LC ladder network with uneven terminations 
[1].  The odd-degree Zolotarev lowpass filter has a single 
reflection zero (loss zero) at zero frequency and a large 
ripple between zero frequency and the lower passband 
corner, and is realizable in LC ladder form with equal ter-
minations [2]. 

Zolotarev rational function approximations for lowpass 
filters of even- and odd-degree were introduced by Mat-
thaei [1] and Levy [2], respectively, and Horton extended 
the odd-degree Zolotarev approximation to responses with 
finite-frequency transmission zeros (loss poles) [3].  Even-
degree approximation was achieved by mapping a Cheby-
shev response, while odd-degree Zolotarev approximation 
required specialized computational techniques using 
Jacobi's eta function. 

In this paper, classical Chebyshev rational function ap-
proximation in a transformed variable is extended to in-
clude Zolotarev responses, thus simplifying the design 
procedure.  The resulting amplitude response  can be eas-
ily converted to that of a narrow bandpass filter and used 
to realize a coupled-resonator lowpass prototype network. 

II. TRANSFORMED VARIABLE SYNTHESIS  

The conventional LC bandpass transformed frequency 
variable is given by [4] 
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which maps the filter passband onto the entire imaginary z-
axis and the stopband into the positive z-axis.  The starting 
point for the approximation step of synthesis is formation 
of the polynomial 
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where n is the filter degree, the mi are the loss poles trans-
formed by (1) and E and F are even polynomials in z.  
Finite nonzero loss poles transform to identical pairs on 
the real z-axis, or to two positive-real conjugate pairs for 
each complex s-plane quadruplet.  As a result, E + zF is 
strictly Hurwitz, and the roots of E and zF are interlaced 
along imaginary z-axis (the filter passband).   For stopband 
(positive z-axis) loss estimates, a further frequency trans-
formation may be made to γ = ln z, and γi = ln mi. 

A. Even Degree Approximation 

The even-degree Zolotarev response can be obtained by 
a straightforward bilinear mapping of the Chebyshev re-
sponse, where the lower passband corner at ω = 0 is 
mapped to ω = a, and the upper passband corner at ω = 1 
and ω → ∞ map to their same values [1], [2].  The same 
results can also be obtained with the transformed variable 
using (1) and (2), with all mi = 1 (all loss poles at ω 
→ ∞ and none at zero frequency), using the classical Che-
byshev rational function [4] 
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where K = S11/S21 is the characteristic function, S11 and 
S21 are the reflection and transmission coefficients, re-
spectively, and 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



 

 

 

110

1

10 −

=
RL

k , (4) 

where RL is the minimum passband return loss ripple. 
The rational function (3) may be used for any general 

distribution of loss poles, and the frequency transformation 
(1) guarantees that |K|2 will be equiripple with a maximum 
value of k2 in the passband.  

In approximating a stopband specification by iteratively 
adjusting the loss poles, the loss α in decibels may be es-
timated by [4] 
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with negligible error for values of RL and α which are 
greater than 15 dB each. 

B. Odd Degree Approximation 

The method used to form the Chebyshev rational func-
tion (3) does not apply to an odd-degree Zolotarev rational 
function because a loss zero is required at z = 1/a (ω = 0), 
which is outside the passband.  However the approximat-
ing function can be formed as the product of two rational 
functions:  one which is equiripple in the passband with n 
– 1 loss zeros, and another which is nearly constant across 
the passband and contains the loss zero at z = 1/a.  This 
procedure is similar to that for the doubly-terminated 
asymmetric parametric LC bandpass filter [4];  the Zolo-
tarev rational function filter is treated as an asymmetric 
parametric bandpass filter with no loss poles below the 
passband and with the real-axis loss zero fixed (rather than 
a free parameter) at zero frequency.   

Using (2) and (4), the Zolotarev rational function, which 
results after canceling common factors in the two rational 
functions, is 
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where abc 2= ; the one positive root of FzcE 2− at 
22 bz =  is factored out to form the polynomial )( 2zU , 

whose remaining roots are in 0 2 <z  (the passband).  The 
positive constant b is calculated from (7) by [4] 
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Equation (7) is solved iteratively, starting with b = 1/a 
until b no longer changes value.  

Note that 22 kK = at the passband edges ( 0 2 =z and 
∞→2z ).  The rational function solution is not exactly 

equiripple; the passband loss deviates slightly from a true 
equiripple response with maximum deviation in the vicin-
ity of 22 bz −= , but for practical cases the deviation is 
usually so small that it is not perceptible in the loss re-
sponses. 

In estimating the odd-degree stopband loss, the 
contribution of the loss zero at z = 1/a is taken into ac-
count in (5) by including the negative term 
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2
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C. Realization 

Following either filter approximation step above, the re-
alization step of synthesis may be performed to obtain a 
lowpass LC ladder [4] or other appropriate structure. 

For bandpass applications, either the even- or the odd-
degree Zolotarev response can be remapped to a narrow-
bandpass response and realized as a coupled-resonator 
filter [5].  As in the Chebyshev case, a Zolotarev coupled-
resonator filter of even- or odd-degree can be structurally 
symmetric with equal terminations. 

III. COUPLED RESONATOR PROTOTYPES 

Following are comparisons of lossless Chebyshev and 
Zolotarev narrow bandpass prototype filters of degree six 
and seven.  The normalized coupled-resonator lowpass 
prototype for all examples is shown in Fig. 1; all of the 
loss poles will be at infinite frequency. 

 

Fig. 1. Normalized coupled-resonator lowpass prototype. 
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The filter terminations and resonators are represented by 
unit-valued resistors and capacitors, respectively, and ideal 
admittance inverters of characteristic admittance Ji,i+1 rep-
resent the couplings. 

A. Degree Six Filters 

For a six-resonator narrow-bandpass Chebyshev filter 
centered at 1000 MHz, with an 80 MHz wide equripple 
passband and 26 dB maximum return loss, theoretical re-
flection and transmission responses are shown in Fig. 2.  
The non-zero coupling matrix elements in the prototype, 
which may be calculated from standard formulas, are 
 J0,1 = J6,7 = 1.1238 

 J1,2 = J5,6 = 0.9619 

 J2,3 = J4,5 = 0.6564 

 J3,4 = 0.6184 . 
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Fig. 2. Lossless Chebyshev bandpass responses, n = 6. 

Six-resonator Zolotarev responses with the equiripple 
passbands only in the outer 10 MHz segments of the 80 
MHz band are shown in Fig. 3.  The corresponding cou-
plings are 
 J0,1 = J6,7 = 0.6300 

 J1,2 = J5,6 = 0.8984 

 J2,3 = J4,5 = 0.3129 

 J3,4 = 0.8314 . 
Although the Chebyshev filter may be adequate for a 

typical bandpass filter requirement, it is inefficient when 
only the outer 10 MHz at each end of the 80 MHz band is 
actually needed to pass signals, and the Zolotarev filter 
shows higher stopband rejection.  The even-degree Zolo-
tarev filter also provides a small amount of  rejection at the 

center frequency, which could be useful in some applica-
tions. 
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Fig. 3. Lossless Zolotarev bandpass responses, n = 6. 

B. Degree Seven Filters 

Similarly, seven-resonator Chebyshev responses for the 
same center frequency and equiripple bandwidth are 
shown in Fig. 4, with couplings given by 
 J0,1 = J7,8 = 1.1129 

 J1,2 = J6,7 = 0.9417 

 J2,3 = J5,6 = 0.6382 

 J3,4 = J4,5 = 0.5900 . 
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Fig. 4. Lossless Chebyshev bandpass responses, n = 7. 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



 

 

Seven-resonator Zolotarev responses, also equiripple 
only over the outer 10-MHz segments, are shown in Fig. 5.  
The coupling elements are 
 J0,1 = J7,8 = 0.6762 

 J1,2 = J6,7 = 0.8533 

 J2,3 = J5,6 = 0.4294 

 J3,4 = J4,5 = 0.6097 . 

920 940 960 980 1000 1020 1040 1060 1080
50

40

30

20

10

0

S11
S21

S11, S21 (dB vs MHz)

 

Fig. 5. Lossless Zolotarev bandpass responses, n = 7. 

Again the Zolotarev filter shows higher stopband rejec-
tion than the Chebyshev filter.  In the odd-degree Zolo-
tarev filter a narrow passband occurs at center frequency, 
which could be of use if, for example, a pilot tone must be 
passed by the filter. 

IV. CONCLUSION 

In the examples presented, the location of the loss poles 
were fixed at infinite frequency in the lowpass frequency 
domain.  Using rational approximation in a transformed 
frequency variable, the synthesis may include loss poles 
placed at arbitrary finite stopband frequencies for in-
creased stopband selectivity, or placed on the real s-plane 
axis or at complex s-plane frequencies for delay equaliza-
tion, or both. 

In instances where rejection between the passbands is 
required, but rejection below the lower passband and 
above the upper passband is not required, the Zolotarev 
responses may be mapped to a narrow bandstop response 
[6]. 
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