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Abstract — Zolotarev rational functions may be used in
certain bandpass filter applications for which two narrower
passbands are required. Coupled-resonator lowpass proto-
types for narrow bandpass filters based on even- and odd-
degree Zolotarev functions are synthesized using transformed
variables.

|. INTRODUCTION

A double-passband rf or microwave filter requirement is
usually satisfied with two bandpass filters, diplexed at both
ends. In instances where rejection between the passhands
is not required, a more efficient use of resonators and a
simpler structure may be obtained with a single coupled-
resonator filter based on a Zolotarev lowpass prototype of
either even or odd degree.

The conventional Chebyshev LC lowpass filter has an
equiripple passband in the normalized lowpass frequency
domain defined by 0 < w< 1. The Zolotarev lowpass filter
is similar, except that the equiripple passband is defined by
0 <a<ws< 1, as for a conventional LC bandpass filter.
The even-degree Zolotarev lowpass filter has a mismatch
at zero frequency, and is realizable as an impedance-
transforming LC ladder network with uneven terminations
[1]. The odd-degree Zolotarev lowpass filter has a single
reflection zero (loss zero) at zero frequency and a large
ripple between zero frequency and the lower passbhand
corner, and is realizable in LC ladder form with equal ter-
minations [2].

Zolotarev rational function approximations for lowpass
filters of even- and odd-degree were introduced by Mat-
thaei [1] and Levy [2], respectively, and Horton extended
the odd-degree Zolotarev approximation to responses with
finite-frequency transmission zeros (loss poles) [3]. Even-
degree approximation was achieved by mapping a Cheby-
shev response, while odd-degree Zolotarev approximation
required specialized computational techniques using
Jacobi's eta function.

In this paper, classical Chebyshev rational function ap-
proximation in a transformed variable is extended to in-
clude Zolotarev responses, thus simplifying the design
procedure. The resulting amplitude response can be eas-
ily converted to that of a narrow bandpass filter and used
to realize a coupled-resonator lowpass prototype network.

Il. TRANSFORMED VARIABLE SYNTHESIS

The conventional LC bandpass transformed frequency
variable is given by [4]
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which maps the filter passband onto the entire imaginary z-
axis and the stopband into the positive z-axis. The starting
point for the approximation step of synthesis is formation
of the polynomial
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where n is the filter degree, the m; are the loss poles trans-
formed by (1) and E and F are even polynomials in z.
Finite nonzero loss poles transform to identical pairs on
the real z-axis, or to two positive-real conjugate pairs for
each complex s-plane quadruplet. As a result, E +zF is
strictly Hurwitz, and the roots of E and zF are interlaced
along imaginary z-axis (the filter passband). For stopband
(positive z-axis) loss estimates, a further frequency trans-
formation may be made to y=1Inz, and y = In m;.

A. Even Degree Approximation

The even-degree Zolotarev response can be obtained by
a straightforward bilinear mapping of the Chebyshev re-
sponse, where the lower passband corner at w = 0 is
mapped to w = a, and the upper passband corner at w=1
and w — oo map to their same values [1], [2]. The same
results can also be obtained with the transformed variable
using (1) and (2), with all m; = 1 (all loss poles at w
- oo and none at zero frequency), using the classical Che-
byshev rational function [4]
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where K = S11/S21 is the characteristic function, S11 and

S21 are the reflection and transmission coefficients, re-
spectively, and
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where RL is the minimum passband return loss ripple.

The rational function (3) may be used for any general
distribution of loss poles and the frequency transformation
(1) guarantees that |K| will be equiripple with a maximum
value of k™ in the passband.

In approximating a stopband specification by iteratively
adjusting the loss poles, the loss a in decibels may be es-
timated by [4]
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with negligible error for values of RL and a which are
greater than 15 dB each.

B. Odd Degree Approximation

The method used to form the Chebyshev rational func-
tion (3) does not apply to an odd-degree Zolotarev rational
function because a loss zero is required at z = 1/a (w = 0),
which is outside the passband. However the approximat-
ing function can be formed as the product of two rational
functions: one which is equiripple in the passhand with n
— 1 loss zeros, and another which is nearly constant across
the passband and contains the loss zero at z = 1/a. This
procedure is similar to that for the doubly-terminated
asymmetric parametric LC bandpass filter [4]; the Zolo-
tarev rational function filter is treated as an asymmetric
parametric bandpass filter with no loss poles below the
passhand and with the real-axis loss zero fixed (rather than
a free parameter) at zero frequency.

Using (2) and (4), the Zolotarev rational function, which
results after canceling common factors in the two rational
functions, is
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Where c—b2 a; the one positive root of CE - 22 F at

2 =p? s factored out to form the polynomraIU(z ),
whose remaining roots are in 2?2 <0 (the passband). The
positive constant b is calculated from (7) by [4]
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Equation (7) is solved iteratively, starting with b = 1/a
until b no longer changes value.

Note that |K| =k at the passband edges (z? =0and
22 . ). The rational function solution is not exactly
equiripple; the passhand loss deviates slightly from a true
equiripple response with maximum deviation in the vicin-
ity of 22 = b2, but for practical cases the deviation is
usually so smaII that it is not perceptible in the loss re-
sponses.

In estimating the odd-degree stopband loss, the
contribution of the loss zero at z = 1/a is taken into ac-
count in (5) by including the negative term
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C. Realization

Following either filter approximation step above, the re-
alization step of synthesis may be performed to obtain a
lowpass LC ladder [4] or other appropriate structure.

For bandpass applications, either the even- or the odd-
degree Zolotarev response can be remapped to a narrow-
bandpass response and realized as a coupled-resonator
filter [5]. As in the Chebyshev case, a Zolotarev coupled-
resonator filter of even- or odd-degree can be structurally
symmetric with equal terminations.

I11. COUPLED RESONATOR PROTOTYPES

Following are comparisons of lossless Chebyshev and
Zolotarev narrow bandpass prototype filters of degree six
and seven. The normalized coupled-resonator lowpass
prototype for all examples is shown in Fig. 1; all of the
loss poles will be at infinite frequency.

"F n b + 1
| I I I
0 2+1
Fig. 1.  Normalized coupled-resonator lowpass prototype.
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The filter terminations and resonators are represented by
unit-valued resistors and capacitors, respectively, and ideal
admittance inverters of characteristic admittance J;;., rep-
resent the couplings.

A. Degree Six Filters

For a six-resonator narrow-bandpass Chebyshev filter
centered at 1000 MHz, with an 80 MHz wide equripple
passhand and 26 dB maximum return loss, theoretical re-
flection and transmission responses are shown in Fig. 2.
The non-zero coupling matrix elements in the prototype,
which may be calculated from standard formulas, are

Jo1=Jo7=1.1238

J12=Js5=0.9619

Jp3=J45 = 0.6564
J3,=0.6184.
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Fig. 2. Lossless Chebyshev bandpass responses, n = 6.

Six-resonator Zolotarev responses with the equiripple
passbands only in the outer 10 MHz segments of the 80
MHz band are shown in Fig. 3. The corresponding cou-
plings are

\]0’1 = ‘]6,7 =0.6300

‘]1,2 = ‘]5,6 =0.8984
\]2’3 = \]4’5 =0.3129

Jy4=0.8314.

Although the Chebyshev filter may be adequate for a
typical bandpass filter requirement, it is inefficient when
only the outer 10 MHz at each end of the 80 MHz band is
actually needed to pass signals, and the Zolotarev filter
shows higher stopband rejection. The even-degree Zolo-
tarev filter also provides a small amount of rejection at the

center frequency, which could be useful in some applica-
tions.

S11, S21 (dB vs MHz)

0 T |
1
10— 1 —
1
! 1
! \
—20— ' —
) -
! -
||'l I"\l :I‘I ’ ,:
—30[~ i it 7]
I|'|,|: |:|'"
\ P
A [
N i\
1
it K
| o | | | |
—50 il ;
920 940 960 980 1000 1020 1040 1060 1080
T s11
S21

Fig. 3. Lossless Zolotarev bandpass responses, n = 6.

B. Degree Seven Filters

Similarly, seven-resonator Chebyshev responses for the
same center frequency and equiripple bandwidth are
shown in Fig. 4, with couplings given by

-]0'1 = ‘]7,8 =1.1129

-]1'2 = ‘]6,7 =0.9417
-]2'3 = ‘]5,6 =0.6382
-]3'4 = -]4'5 =0.5900.
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Fig. 4.  Lossless Chebyshev bandpass responses, n = 7.
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Seven-resonator Zolotarev responses, also equiripple
only over the outer 10-MHz segments, are shown in Fig. 5.
The coupling elements are

Jo1=J75=0.6762
J1=J67=0.8533
Jp3= Js5 = 0.4294
J34= J45=0.6097 .
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Fig.5.  Lossless Zolotarev bandpass responses, n = 7.

Again the Zolotarev filter shows higher stopband rejec-
tion than the Chebyshev filter. In the odd-degree Zolo-
tarev filter a narrow passband occurs at center frequency,
which could be of use if, for example, a pilot tone must be
passed by the filter.

IV. CONCLUSION

In the examples presented, the location of the loss poles
were fixed at infinite frequency in the lowpass frequency
domain. Using rational approximation in a transformed
frequency variable, the synthesis may include loss poles
placed at arbitrary finite stopband frequencies for in-
creased stopband selectivity, or placed on the real s-plane
axis or at complex s-plane frequencies for delay equaliza-
tion, or both.

In instances where rejection between the passbands is
required, but rejection below the lower passband and
above the upper passband is not required, the Zolotarev
responses may be mapped to a narrow bandstop response

[6].
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